Thrombophilia testing in neonates and infants with thrombosis

Ulrike Nowak-Göttl a,*, Karin Kurnik b, Daniela Manner a, c, Gili Kenet d

a Department of Coagulation and Hemostasis, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Building 17, Campus Kiel, D-24105 Kiel, Germany
b Department of Pediatrics, University Children’s Hospital Munich, Germany
c Department of Coagulation and Hemostasis, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Campus Lubbock, Germany
d The Israel National Hemophilia Centre, Sheba Medical Centre, Tel-Hashomer, Israel

Keywords:
Inherited thrombophilia
Neonatal thrombosis
Screening

SUMMARY

In neonates and infants with idiopathic venous thrombosis (VTE) and in pediatric populations in which thromboses were associated with medical diseases, inherited thrombophilia (IT) have been described as risk factors. Follow-up data for VTE recurrence in neonates suggest a recurrence rate between 3% in provoked and 21% in idiopathic VTE. Apart from underlying medical conditions, recently reported systematic reviews on pediatric VTE have shown significant associations between factor V G1691A, factor II G20210A, and deficiencies of protein C, protein S and antithrombin, even more pronounced when combined IT were involved. Independent from the age at first VTE onset, the pooled odds ratios (OR: single IT) for VTE ranged from 2.4 for the factor II G20210A mutation to 9.4 in neonates and infants with antithrombin deficiency. The pooled OR for persistent antiphospholipid antibodies/lupus anticoagulants was 4.9 for pediatric patients with venous VTE. The factor II G20210A mutation (OR: 2.1), and deficiencies of protein C (OR: 2.4), S (OR: 3.1) and antithrombin (OR: 3.0) also played a significant role at recurrence. Based on these data, screening and treatment algorithms must be discussed.

1. Introduction

Venous thromboembolism (VTE) in neonates and infants is a rare disease which is increasingly diagnosed, usually as a secondary complication of primary underlying diseases such as sepsis, cancer, congenital heart disease, elevated endogenous testosterone or after therapeutic interventions such as central venous lines (Table 1). Pediatric VTE is a severe disease for which long term outcomes include lack of thrombus resolution in 50% of cases and the development of post-thrombotic syndrome in more than one-third of patients. Within the entire childhood population, neonates are at the greatest risk for VTE, with a second peak in incidence during puberty and adolescence. The annual incidence of venous events in the first year of life was estimated to be 5.1 per 100,000 live births in Caucasian children and 24 per 10,000 admissions of neonates to neonatal intensive care units. Further locations of childhood thromboembolism are cerebral venous thrombosis, mainly of venous origin. In addition, central-line-associated VTEs have been reported. Further locations of childhood thromboembolism are cerebral venous thrombosis, and portal or mesenteric vein thrombosis. Purpura fulminans, a life-threatening event characterized histologically by microvascular thromboses in the dermis followed by perivascular hemorrhage, has been reported in neonates with congenital absence of protein C or protein S, or the presence of homozygous or heterozygous factor V G1691A mutation.
1.2. Role of inherited thrombophilias [IT] in pediatric VTE

The distribution of IT varies in different countries with respect to the population background and the number of patient/controls investigated.

In recently published systematic reviews and meta-analyses, including observational studies in pediatric patients with deep venous VTE and cerebrovascular occlusion (cerebral venous thrombosis and stroke), >70% of patients had at least one clinical risk factor, independent from the age of first VTE onset.60–62 The pooled odds ratios (OR) showed statistically significant associations between factor V G1691A; factor II G20210A; deficiencies of protein C, protein S or antithrombin; elevated lipoprotein (a); combined IT deficiency. Furthermore, since the rate of combined IT associated with a first symptomatic onset is not negligible in the pediatric population, non-major risk factors such as the factor V G1691A mutation or the prothrombin G20210A variant should be included in a screening program. Since a second VTE after a first episode of spontaneous VTE, i.e. thrombosis in the absence of further secondary causes, has indicated a subgroup of pediatric patients suffering from combined prothrombotic risk factors to be at high risk for recurrent VTE.

Table 1

<table>
<thead>
<tr>
<th>Perinatal diseases</th>
<th>Birth asphyxia</th>
<th>Respiratory distress syndrome</th>
<th>Infants of diabetic mothers</th>
<th>Neonatal infections</th>
<th>Necrotizing enterocolitis</th>
<th>Dehydration</th>
<th>Congenital nephrotic syndrome</th>
<th>Polycthemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical interventions</td>
<td>Central lines (arterial or venous)</td>
<td>Surgery</td>
<td>Immobilization</td>
<td>Plaster casts</td>
<td>Extracorporeal membrane oxygenation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute diseases</td>
<td>Trauma</td>
<td>Seizis</td>
<td>Dehydration</td>
<td>Acute rheumatic diseases</td>
<td>Neptic syndrome</td>
<td>Acute lymphoblastic leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic diseases</td>
<td>Malignancies</td>
<td>Renal diseases</td>
<td>Cardiac malformations</td>
<td>Chronic rheumatic diseases</td>
<td>Metabolic diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td>E. coli asparaginase</td>
<td>Prednisoni</td>
<td>Coagulation factor concentrates</td>
<td>Heparin</td>
<td>Antifibrinolytic agents</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Inherited thrombophilia</th>
<th>First VTE onset</th>
<th>Recurrent VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein C deficiency</td>
<td>7.7 (4.4–13.4)</td>
<td>2.4 (1.2–4.4)</td>
</tr>
<tr>
<td>Protein S deficiency</td>
<td>5.6 (3.0–11.0)</td>
<td>3.1 (1.5–6.5)</td>
</tr>
<tr>
<td>Antithrombin deficiency</td>
<td>9.4 (3.3–26.7)</td>
<td>3.0 (1.4–6.3)</td>
</tr>
<tr>
<td>Factor V G1691A</td>
<td>3.6 (1.8–4.8)</td>
<td>1.4 (0.4–1.2)</td>
</tr>
<tr>
<td>Factor II G20210A</td>
<td>2.6 (1.6–4.4)</td>
<td>2.1 (1.0–3.5)</td>
</tr>
<tr>
<td>Lipoprotein (a)</td>
<td>4.3 (3.3–6.2)</td>
<td>0.8 (0.5–1.4)</td>
</tr>
<tr>
<td>LA/aPL</td>
<td>4.9 (2.2–10.9)</td>
<td>Not available</td>
</tr>
</tbody>
</table>
| ≥2 inherited traits | 9.5 (4.9–18.4) | 4.5 (4.5–6.9)

VTE, venous thromboembolism; LA/aPL, lupus anticoagulants/antiphospholipid antibodies.

6.6 for children with cerebrovascular occlusion and 4.9 for pediatric cases with venous VTE.61,62 The factor II G20210A mutation, protein C, protein S and antithrombin deficiency also played a significant role in recurrent VTE. In all three pediatric meta-analyses, age at first thromboembolic onset (Figure 2), publication year or study country did not play a significant role on the OR obtained, thus data are valid for the entire pediatric population aged neonate to 18 years.

1.3. Inherited thrombophilia screening in neonates and children

Follow-up data for VTE recurrence in children are available from few reports, suggesting a recurrence rate between 3% in neonates and 21% in children with idiopathic VTE.7,9,12,13,38,48,49,51,54,56,64,65 However, in the pediatric age group, it remains a controversial issue as to whether patients with thrombosis or offspring from thrombosis-prone families benefit from screening for IT.64,66–74 Based on the data obtained from the recent meta-analyses and systematic reviews, at least the symptomatic propositus should be screened in a specialized coagulation unit for prothrombotic defects,60–63 such as antithrombin, protein C or protein S deficiency. Furthermore, since the rate of combined IT associated with a first symptomatic onset is not negligible in the pediatric population, non-major risk factors such as the factor V G1691A mutation or the prothrombin G20210A variant should be included in a screening program. Since a second VTE after a first episode of spontaneous VTE, i.e. thrombosis in the absence of further secondary causes, has indicated a subgroup of pediatric patients suffering from combined prothrombotic risk factors to be at high risk for recurrent VTE.

![Neonatal thromboembolism](image)

Fig. 1. Pedigree and thromboembolic manifestation in a male neonate (grey square) with combined thrombophilic traits [elevated lipoprotein (a): Lp(a) and factor V G1691A:FV]; renal vein thrombosis as origin for thromboembolic stroke (age of onset and three months).

![Regression of Age at DVT on Log odds ratio](image)

Fig. 2. Influence of factor V G1691A on age at first thromboembolic onset (regression analysis: data set from Young et al.62). DVT, deep vein thrombosis.
risk of recurrent thrombosis, 38 the latter approach to search for multiple risk factors is stressed. Based on the fact that an effective primary prophylactic anticoagulant therapy is available in risk situations, IT screening programs must be individually discussed in selected non-symptomatic siblings and further first degree family members in high risk families such as antithrombin, protein C or protein S deficiency carriers, or in cases in which combined IT are identified.

1.4. Treatment modalities

As in adults it is still a matter of debate whether long term continuation of anticoagulant treatment should be considered after a first VTE in carriers of a thrombophilic trait. 75 In neonates and infants with a first VTE, randomized therapeutic trials are lacking and treatment guidelines are mainly adapted from adults, 76–78 but more than in adults, the prolonged use of anticoagulant treatment in a physically active age group must be weighed against the risk of bleeding.

2. Conclusions

Apart from risk stratification in neonates and infants with VTE based on clinically acquired circumstances along with acquired and genetic thrombophilic risk factors, future evidence-based prospective anticoagulant/antithrombotic treatment trials including newly available anticoagulants are mandatory to effectively prevent thrombosis-related long term complications in children, such as the post-thrombotic syndrome. 79

Practice points

• Thrombotic locations in neonates and infants include unusual and multiple sites.
• Presence of thrombophilic risk factors are not age dependent.
• Screening is recommended on the individual population-based background.

References

44. Atasay B, Arsan S, Günlemez A, Kemhali S, Akar N, Factor V. Leiden and
prothrombin gene 20210A variant in neonatal thromboembolism and in
healthy neonates and adults: a study in a single center. Pediatr Hematol Oncol

mutation and other thrombophilic haplotypes in Egyptian children with portals vein thrombosis: results of a single-center case–control study. Ann Hematol

region thrombophilia Group. Elevated plasma factor VIII and D-dimer levels as

Renal venous thrombosis in neonates: prothrombotic risk factors and long-

50. Rank O, Bernstorp E, Ljung R. Risk factors for venous thrombosis in Swedish

51. Marks SD, Massicotte P, Steele BT, et al. Neonatal renal venous thrombosis:
clinical outcomes and prevalence of prothrombotic disorders. J Pediatr

52. Brandão LR, Williams S, Kahr WH, Ryan C, Temple M, Chan AK. Exercise-
induced deep vein thrombosis of the upper extremity. 2. A case series in

53. Tavil B, Ozyurek E, Gumruk C, Cetin A, Gurgey A. Antiphospholipid antibo-
dies on symptomatic thromboembolism in children: a systematic review and

arterial ischemic stroke in children: a systematic review and meta-analysis of

56. Atasay B, Arsan S, Günlemez A, Kemhali S, Akar N, Factor V. Leiden and
prothrombin gene 20210A variant in neonatal thromboembolism and in
healthy neonates and adults: a study in a single center. Pediatr Hematol Oncol

mutation and other thrombophilic haplotypes in Egyptian children with portals vein thrombosis: results of a single-center case–control study. Ann Hematol

60. Goldenberg NA, Knapp-Cleveenger R, Manco-Johnson MJ. Mountain states
region thrombophilia Group. Elevated plasma factor VIII and D-dimer levels as

Renal venous thrombosis in neonates: prothrombotic risk factors and long-

63. Marks SD, Massicotte P, Steele BT, et al. Neonatal renal venous thrombosis:
clinical outcomes and prevalence of prothrombotic disorders. J Pediatr

64. Brandão LR, Williams S, Kahr WH, Ryan C, Temple M, Chan AK. Exercise-
induced deep vein thrombosis of the upper extremity. 2. A case series in

65. Tavil B, Ozyurek E, Gumruk C, Cetin A, Gurgey A. Antiphospholipid antibo-

symptomatic venous thrombosis and post-thrombotic syndrome: results of a

children with peripheral venous and arterial thrombosis. Acta Haemotol

thromboembolism in the European collaborative paediatric database on cerebral

69. Ozyurek E, Balta G, Degerliyurt A, Parlak H, Ayusen S, Gurgey A. Significance of
factor V, prothrombin, MTHFR, and PAI-1 genotypes in childhood cerebral

for the diagnosis of asymptomatic deep vein thrombosis in the upper body in
children: results of the PARKVA study. Prophylactic antithrombin replacement

venous thromboembolism in children: a systematic review and meta-analysis

arterial ischemic stroke in children: a systematic review and meta-analysis of

symptomatic venous thrombosis and post-thrombotic syndrome: results of a

children with peripheral venous and arterial thrombosis. Acta Haemotol

thromboembolism in the European collaborative paediatric database on cerebral

77. Ozyurek E, Balta G, Degerliyurt A, Parlak H, Ayusen S, Gurgey A. Significance of
factor V, prothrombin, MTHFR, and PAI-1 genotypes in childhood cerebral

for the diagnosis of asymptomatic deep vein thrombosis in the upper body in
children: results of the PARKVA study. Prophylactic antithrombin replacement

venous thromboembolism in children: a systematic review and meta-analysis