Brief Communication

Recurrent pulmonary embolism in a 13-year-old male homozygous for the prothrombin G20210A mutation combined with protein S deficiency and increased lipoprotein (a)

Andrea Koscha,*, Ralf Junkerb,c, Cornelia Wermesd, Ulrike Nowak-Göttla

aDepartment of Pediatric Hematology and Oncology, Westfälische Wilhelms-Universität Münster, Albert Schweitzer-Str. 33, D-48149 Münster, Germany
bDepartment of Clinical Chemistry and Laboratory Medicine, University of Münster, Münster, Germany
cDepartment of Arteriosclerosis Research, University of Münster, Münster, Germany
dDepartment of Internal Medicine, Medical School of Hanover, Hanover, Germany

Received 16 August 2001; received in revised form 12 November 2001; accepted 12 November 2001

Accepting Editor: W. Muntean

Abstract

We report the case of a 13-year-old male presenting with recurrent symptoms of respiratory distress after a trauma of the lower limb. Pulmonary symptoms had been misinterpreted for several weeks and only marked symptoms of deep venous (DVT) and caval vein thrombosis later prompted the correct diagnosis of DVT and embolic events and subsequently a successful thrombolytic therapy. The case reported here shows a diagnostic pitfall of pulmonary embolism in an adolescent. It emphasizes the need to consider the possibility of thromboembolic events also in young children and adolescents presenting with atypical pulmonary symptoms and suffering from pulmonary diseases not responding to antibiotic therapy. In addition, although the homozygous PT A20210A gene mutation is a rare defect and its relevance as a risk factor on its own remains to be elucidated, this case suggests that a complete thrombophilia laboratory workup should be performed in young patients with a first symptomatic thromboembolic onset. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Homozygous prothrombin A20210A mutation; Protein S deficiency; Lipoprotein (a); Deep venous thrombosis; Pulmonary embolism

1. Introduction

Pulmonary embolism is a serious complication of deep venous thrombosis (DVT) but is rare in pediatric patients. Although pulmonary emboli can be detected by scintigraphy or angiography in up to 50% of adult patients with DVT, diagnosis of this vascular accident may be difficult in young patients, and inadequate therapy for pneumonia or other chest-related diseases is common [1]. Several prothrombotic genetic risk factors are known to predispose to thrombotic events with manifestation at young age. The heterozygous mutation of the G20210G prothrombin (PT) gene has recently been suggested as a prothrombotic risk factor [2]. However, the clinical significance of the homozygous prothrombotic variant for the risk of thrombosis is not clear, and reports are sparse and equivocal [3,4].

We report the case of a pediatric patient with the homozygous A20210A PT mutation suffering from deep venous thrombosis with recurrent symptomatic pulmonary embolism. Therapy for pneumonia had been initiated after onset of clinical symptoms and the correct diagnosis was made several months later. Laboratory screening for prothrombotic risk factors revealed a homozygous carrier state for the PT G20210A mutation, as well as protein S deficiency and an elevated level of lipoprotein (a).

2. Laboratory methods

2.1. Blood samples

With informed parental consent, blood samples were collected 3 months after the acute thrombotic onset by...
peripheral venipuncture, and measurement of plasma and coagulation parameters as well as DNA analysis were performed as recently described [5].

2.2. Assays for genotyping

The factor V (FV) G1691A and the PT G20210A genotypes were determined by polymerase chain reaction and analysis of restriction fragments as previously reported [2,6,7].

2.3. Assays for plasma proteins

Amidolytic protein C and antithrombin activities were measured on an ACL 300 analyzer (Instrumentation Laboratory, Germany) using chromogenic substrates (Chromogenix, Sweden). Free protein S antigen, total protein S, and protein C antigen were measured using commercially available ELISA assay kits (Stago, France). Lp(a) and anticardiolipin antibodies (IgM and IgG) were determined with ELISA techniques (Chromogenix).

Criteria for the hereditary nature of a hemostatic defect were its presence in at least one further first or second degree family member and/or the identification of a causative gene mutation [5,8].

3. Case

A 13-year-old male presented with recurrent symptoms of respiratory distress. The patient’s history revealed no abnormalities until 4 months prior to admission when the patient suffered a trauma of the ankle with immobilization for several days. Following that episode, the patient developed unspecific pulmonary symptoms that were interpreted as “longstanding bronchitis.” Later on pleuritis was suspected, but symptoms persisted despite antibiotic therapy. Three weeks later, respiratory symptoms were accompanied by recurrent abdominal pain and an appendectomy was performed without heparin prophylaxis. However, surgical exploration and histological analysis revealed no inflammatory changes in the appendix.

Although the postsurgical course was complicated by weight loss, fever, and persistent cough, the patient was discharged 3 weeks after the appendectomy. Weight loss, coughing, and subfebrile temperatures continued at home. Painful swelling of both legs finally led to the suspected diagnosis of recurrent deep venous thrombosis and pulmonary embolism. Moreover, the mother’s family history (cousin: Fig. 1) was positive for recurrent venous thromboembolism due to a known familial protein S type I deficiency.

The 13-year-old patient was immediately admitted to hospital, where phlebography and compression Doppler sonography revealed a fresh thrombus in the left popliteal vein, and a lung scan confirmed multiple older and fresh pulmonary embolisms. Moreover, an inferior caval vein thrombosis was suspected by Doppler sonography but was not clearly verified by venography. In addition, a postthrombotic syndrome in both legs was documented radiographically. Thrombolytic therapy with urokinase and concomitant heparin was performed for 8 days, followed by resolution of the pulmonary symptoms. Moreover, the

Fig. 1. Pedigree of a thrombosis-prone family suffering from the PT G20210A gene mutation, protein S type I deficiency, and increased Lp (a). The arrows indicate symptomatic family members.
swelling of the legs was reduced. Subsequently, the patient was treated with enoxaparin (1.5 mg/kg/d). Laboratory analysis beyond the acute phase (3 and 6 months, respectively) revealed normal values for aPTT, PT, fibrinogen, antithrombin, and protein C. Free protein S antigen concentrations were repeatedly between 24% and 32% (3 and 6 months after diagnosis of PE), and Lp(a) was clearly increased at 80 mg/dl (normal < 30 mg/dl).

In addition, genetic analysis revealed a homozygous state for the PT G20210A mutation. FV G1691A showed the normal GG genotype. Laboratory screening of the family revealed that both parents were heterozygous carriers of the PT variant. The asymptomatic mother carried additional protein S deficiency type I (39% of normal) and showed increased Lp(a) at 76 mg/dl. In the 19-year-old healthy brother the same prothrombotic risk profile as in the patient was present; however, he did not show signs of vascular accidents until today. The father, however, had developed coronary artery disease at the age of 49. In the mother’s family the cousin and his son, both showing protein S deficiency type I along with increased Lp(a), had suffered recurrent deep venous thrombosis at an age of 17 and 19 years, respectively (Fig. 1).

Because of the severe and early thrombotic onset (deep venous thrombosis, suspected caval venous occlusion, and pulmonary embolism) associated with a genetic recombination of at least three important prothrombotic risk factors and the mother’s positive family history, anticoagulant therapy with vitamin K antagonists was started. Two years after initiation of the therapy the patient is still in good clinical condition and has suffered no further complications.

4. Discussion

The case presented here reports on a 13-year-old male suffering from recurrent pulmonary embolism following deep venous thrombosis after a simple football trauma. As underlying genetic risk factors, the homozygous PT A20210A mutation, protein S type I deficiency, and increased Lp(a) were diagnosed. On the one hand, this case is of interest because the diagnosis was delayed and inappropriate treatment for pneumonia had been initiated despite a family history of thrombosis being well documented. It also illustrates that the rare event of pulmonary embolism can be overlooked in childhood patients.

On the other hand, the genetic profile predisposing the patient to thromboembolism is of interest: The PT G20210A mutation in its heterozygous form has been recently proposed as a prothrombotic risk factor for venous thrombosis in Caucasian populations [2,9,10]. Ethnic and geographic differences ranging from a prevalence rate of 0% to 4% in populations not affected by thrombotic events have been reported for this defect [11]. As in adult patients, the heterozygous form of this PT variant has been suggested as a prothrombotic risk factor in Caucasian pediatric patients with venous thromboembolism [5,12]. Nevertheless, the significance of the rare homozygous mutation alone as a prothrombotic risk factor has been questioned by reports of

<table>
<thead>
<tr>
<th>Author</th>
<th>Further genetic prothrombotic defects</th>
<th>Triggering factors</th>
<th>Location of thrombosis</th>
<th>Age at first thrombotic event</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howard et al. [14]</td>
<td>FV G1691A</td>
<td>Nicotine abuse, physical exercise</td>
<td>Iliac veins, PE, MI</td>
<td>24</td>
<td>Male</td>
</tr>
<tr>
<td>Scott et al. [18]</td>
<td>–</td>
<td>Pregnancy</td>
<td>DVT</td>
<td>18</td>
<td>Female</td>
</tr>
<tr>
<td>Kapur et al. [19]</td>
<td>Hey</td>
<td>–</td>
<td>Retinal veins</td>
<td>66</td>
<td>Male</td>
</tr>
<tr>
<td>Gonzalez Ordonez et al. [16]</td>
<td>FV G1691A</td>
<td>Surgery</td>
<td>DVT/pelvic veins, TIA</td>
<td>63</td>
<td>Male</td>
</tr>
<tr>
<td>Halbmaryer et al. [21]</td>
<td>FV G1691A</td>
<td>Infection</td>
<td>Venous thromboembolism</td>
<td>23</td>
<td>Male</td>
</tr>
<tr>
<td>Kyrle et al. [22]</td>
<td>–</td>
<td>Pregnancy</td>
<td>Superficial veins <35</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Mormage et al. [13]</td>
<td>–</td>
<td>–</td>
<td>DVT</td>
<td>40</td>
<td>Male</td>
</tr>
<tr>
<td>Zawadzki et al. [23]</td>
<td>–</td>
<td>–</td>
<td>DVT, PE, mesenteric veins</td>
<td>40</td>
<td>Male</td>
</tr>
<tr>
<td>Kling et al. [17]</td>
<td>–</td>
<td>T-cell lymphoma</td>
<td>Retinal artery/veins</td>
<td>44</td>
<td>Male</td>
</tr>
<tr>
<td>Eikleboom et al. [20]</td>
<td>–</td>
<td>Surgery</td>
<td>DVT</td>
<td>66</td>
<td>Female</td>
</tr>
<tr>
<td>Corral et al. [15]</td>
<td>FV G1691A</td>
<td>Pregnancy</td>
<td>DVT</td>
<td>34</td>
<td>Female</td>
</tr>
<tr>
<td>FV G1691A</td>
<td>Trauma</td>
<td>DVT, PE</td>
<td>39</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>Giordano et al. [24]</td>
<td>ACA</td>
<td>–</td>
<td>Superficial veins</td>
<td>26</td>
<td>Female</td>
</tr>
<tr>
<td>Mainardi et al. [25]</td>
<td>FV A1691A</td>
<td>–</td>
<td>DVT</td>
<td>34</td>
<td>Male</td>
</tr>
<tr>
<td>Wulf et al. [26]</td>
<td>FV A1691A</td>
<td>–</td>
<td>Superficial veins</td>
<td>18</td>
<td>Male</td>
</tr>
<tr>
<td>Acquila et al. [27]</td>
<td>–</td>
<td>Pregnancy</td>
<td>DVT</td>
<td>22</td>
<td>Female</td>
</tr>
<tr>
<td>Our case</td>
<td>Protein S deficiency, Lp(a)</td>
<td>Trauma</td>
<td>DVT, pelvic veins, PE</td>
<td>13</td>
<td>Male</td>
</tr>
</tbody>
</table>

ACA: anticyclodiopin antibodies; DVT: deep vein thrombosis; Hey: moderate hyperhomocystenemia; PE: pulmonary embolism; MI: myocardial infarction; TIA: transient ischemic attack.
various homozygous subjects with (Table 1 [13–27]) and without manifest thrombosis [3,13,20,21,26,28–31].

The case reported here is the youngest symptomatic individual in a large thrombosis-prone family and the youngest patient with a thromboembolic event reported so far to be carrying the homozygous PT mutation. This suggests, however, that the homozygous PT A20210A mutation increases the prothrombotic risk in patients carrying further prothrombotic risk factors, such as the heterozygous FV G1691A mutation, protein S deficiency, or increased Lp(a). However, the significance of the homozygous PT A20210A mutation as an isolated risk cannot be concluded from our case, since in this patient the PT mutation was combined with other established prothrombotic risk factors, especially with a protein S type I deficiency. The importance of the isolated homozygous PT A20210A mutation remains to be clarified by further family studies.

References

